v-Triazolo[5,4-d]pyrimidines (8-Azapurines). Part 20. ${ }^{1}$ 1-Alkyl Derivatives

By Adrien Albert, Department of Pharmacological Sciences, Health Sciences Center, State University of New York

 at Stony Brook, New York 11794, U.S.A.9-Benzyl-1-methyl-8-azapurin-6-one (2b) was made (a) by heating 4-amino-3-benzyl-1,2,3-triazole-5-(Nmethylcarboxamide) (7a) with formamide, and (b), quantitatively, by methylating 9-benzyl-8-azapurin-6-one. It was debenzylated to 1 -methyl-8-azapurin-6-one (2a), which was also prepared by condensing 4 -amino-1,2,3-triazole-5-(N-methylcarboxamide) (7c) with formamide. The i.r. spectrum of compound (2a) indicates an unusually dipolar nature. 1-Butyl-8-azapurin-6-one and its 9 -benzyl derivative were synthesized analogously. 1 -Methyl-8-azapurine-6-thione (10), prepared from the 6-oxo-analogue (2a). resisted further changes. Attempted chlorination of the oxo-compound (2a), with thionyl chloride and dimethylformamide, produced what appears to be the pyrimidine (12).
4-Amino-5-aminomethyl-3-benzyl-1,2,3-triazole was mono- and bis-trifluoroacetylated, and the former product (13c) was N -methylated then deacylated to 4 -amino-3-benzyl-5-methylaminomethyl-1,2,3-triazole (13f). The latter was condensed with formamidine to 9-benzyl-1,6-dihydro-1-methyl-8-azapurine (11b). 1-Methyl-8-azapurine (3) was made by nitrosating 5 -amino-1,4-dihydro-4-imino-1-methylpyrimidine hydrochloride (16). Compound (3) was found to be about 15% covalently hydrated at equilibrium in $\mathrm{D}_{2} \mathrm{O}$ whereas the cation was completely hydrated (n.m.r. and u.v. evidence). The physical properties in which the neutral species differs most from its known isomers are m.p., volatility, and extractability from water, in all of which it behaves as a much more polarized substance.

Although many derivatives of 8 -azapurine (1) methylated in the 7 -, 8 -, or 9 -position are known, very few 1 alkylated analogues have been reported. Medical interest in 8-azapurines as anticancer drugs ${ }^{2}$ and for the prevention of anaphylactic shock ${ }^{3}$ prompted this exploration of the synthesis and properties of 1-alkyl derivatives such as (2a) and (3).

The known 1 -alkyl derivatives are (a) 2 -amino-1-methyl-8-azapurin-6-one (' 1-methyl-8-azaguanine ') (4), made ${ }^{4}$ by the action of nitrous acid on 2,4,5-triamino-1-methylpyrimidin-6-one, and (b) a set of five 1,6-dihydro6 -imino-l-methyl-8-azapurines (5) (four of them have another N-methyl substituent in the triazole ring) ${ }^{5}$ prepared by the action of methylamine on the corresponding 5 -cyano-4-ethoxymethyleneamino-derivatives of 1,2,3triazole. Unfortunately these imines proved unsuitable for the present project because they rapidly isomerized in cold alkali to 6 -methylamino-8-azapurines (by a Dimroth rearrangement), and dilute acid brought about ring opening to triazole-5-carboxamidines. ${ }^{5}$ However, the simplest example (5a) still held some promise because its basic strength ($\mathrm{p} K_{\mathrm{a}} 3.25$), more than a thousand times less ${ }^{5}$ than that of the 9 -methyl homologue (5b)
\dagger In this series, the amino group of aminotriazoles is consistently numbered 4 to facilitate comparisons.
${ }^{1}$ Part 19, A. Albert and C. J. Lin, J.C.S. Perkin I, 1977, 1819.
${ }^{2}$ G. Brulé, S. J. Eckhardt, T. C. Hall, and A. Winkler, ' Drug Therapy of Cancer,' World Health Organization, Geneva, 1973, pp. 46, 114, 132; L. L. Bennett, M. H. Vail, P. W. Allan, and W. K. Laster, Cancer Research, 1973, 33, 465.
${ }^{3}$ C. J. Coulson, R. E. Ford, S. Marshall, J. L. Walker, K. R. H. Wooldridge, K. Bowden, and T. J. Coombes, Nature, 1977, 265, 545.
($\mathrm{p} K_{\mathrm{a}} 6.84$), indicated a different structure, namely the 6 -amino derivative of structure (3), in resonance with the zwitterion (6). However, attempts to deaminate it by standard methods and by a new procedure (pentyl nitrite in tetrahydrofuran ${ }^{6}$) were fruitless, hence starting materials were sought among suitably substituted 4-amino-1,2,3-triazoles. \dagger

An authentic specimen of 9-benzyl-1-methyl-8-aza-purin-6-one (2b) was made by heating 4 -amino- 3 -benzyl-1,2,3-triazole-5-(N-methylcarboxamide) (7a) with formamide. This triazole was obtained in two ways: (a) by the action of methylamine on 4-amino-3-benzyl-5(methylthio) carbonyl-1,2,3-triazole (8a) by an improved method which avoids use ${ }^{7}$ of a sealed tube, and (b) by heating benzyl azide with N-methylcyanoacetamide in methanolic sodium methoxide. ${ }^{8}$ It was then found that the cold methylation of 9 -benzyl-8-azapurin-6-one, readily prepared in two steps from benzyl azide and cyanoacetamide, ${ }^{9}$ gave the 1 -methyl derivative (2 b) almost quantitatively and with no detectable amount of the 3 -methyl isomer which was on hand from another project.

9-Benzyl-1-methyl-8-azapurin-6-one (2b) was rapidly
${ }^{4}$ C. W. Noell, L. B. Townsend, and R. K. Robins, Synth. Proc. Nucleic Acid Chem., 1968, 1, 44.
${ }_{5}$ A. Albert, J.C.S. Perkin I, 1973, 2659; 1974, 2030.
${ }^{6}$ J. Cadogan and G. Moliner, J.C.S. Perkin I, 1973, 541.
7 A. Albert, J. Chem. Soc. (C), 1969, 2379.
${ }^{8}$ May and Baker Ltd., Brit. Pat. 1,338, 235/1973, U.S. Pat. 3, 819,631/1974.
${ }^{9}$ (a) J. R. E. Hoover and A. R. Day, J. Amer. Chem. Soc., 1956, 78, 5832 ; (b) A. Dornow and J. Helberg, Chem. Ber., 1960, 93, 2001 ; (c) A. Albert, J. Chem. Soc. (C), 1969, 152.
decomposed by boiling aqueous alkali to 3 -benzyl-4-formamido-1,2,3-triazole-5-(N-methylcarboxamide) (7b) and the deformylated analogue (7a). 9-Benzyl-1-butyl-8-azapurin-6-one, a homologue of (2 b), was made by heating formamide and 4 -amino-3-benzyl-1,2,3-triazole-5-(N-butylcarboxamide), which was obtained
singlet at $2.70(5 \mathrm{H})$ and another at $4.63(2 \mathrm{H})$ were obviously derived from a non-eliminated benzyl group. A quartet at $7.22(3 \mathrm{H})(J 4.40)$, and a doublet at 7.33 $(3 \mathrm{H})(J 4.80)$, both signals changing to singlets in $\mathrm{D}_{2} \mathrm{O}$, were allocated to $\mathrm{N}=\mathrm{CH}-\mathrm{NHMe}$ and CONHMe respectively. This evidence combined with the i.r. spectrum

(1)

(4)

(7)

(2)
a; $R=H$
b; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$

(5)
a; $R=H$
b; $R=M e$

(8)

(3)

(6)

(9)
a; $R^{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H} \quad$ a; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$
b; $R^{1}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{R}^{2}=\mathrm{CHO} \quad b ; R=\mathrm{H}$
c; $R^{1}=R^{2}=H$
and elemental analysis established the decomposition product as 3-benzyl-4-methylaminomethyleneamino-1,2,3 -triazole-5-(N-methylcarboxamide) (9). This was confirmed by heating the product at $210{ }^{\circ} \mathrm{C}$ for 30 min , which converted it quantitatively into 9 -benzyl-1-methyl-8-azapurin-6-one (2b). Several dimethyl-aminomethyleneamino-1,2,3-triazoles are known, ${ }^{11}$ but this is the first monoalkyl analogue to be reported.

The elusive 1-methyl-8-azapurin-6-one (2a) was eventually made in two ways: (a) by condensing 4 -amino-1,2,3-triazole-5-(N-methylcarboxamide) (7c) with formamide [the triazole was prepared ${ }^{7}$ from the corresponding 5 -(methylthio)carbonyltriazole (8 b)]; (b) by hydrogenolytic debenzylation of 9 -benzyl-1-methyl-8-azapurin- 6 one (2 b) over palladium. The latter reaction, reluctant under usual conditions, succeeded in hot butanol-acetic acid. The product was soluble in cold N -hydrochloric

[^0]acid and N -sodium hydroxide, in both of which slow decomposition occurred, mainly to the methylcarboxamide (7 c).

The i.r. spectrum of 1 -methyl-8-azapurin-6-one is remarkably different from those of the 7 -methyl, ${ }^{12} 8$ methyl, ${ }^{13}$ and 9 -methyl ${ }^{13}$ isomers (all Nujol mulls) in having strong absorption in the $2595 \mathrm{~cm}^{-1}$ area (particularly. evident in a hexachlorobutadiene mull), and
$3015 \mathrm{~s}(\mathrm{NH}), 1685 \mathrm{~s}$ (amide I), 1560 s (amide II), 1345 m , $1315 \mathrm{~m}, 1245 \mathrm{~s}$ (amide III), and $1025 \mathrm{~m} \mathrm{~cm}^{-1}$.

1-Methyl-8-azapurine-6-thione (10) was readily prepared by the action of phosphorus pentasulphide in boiling pyridine on 1-methyl-8-azapurin-6-one (2a). All attempts to desulphurize it to compound (3) or (11a), with Raney nickel, failed: mild conditions left it unchanged whereas a more vigorous attack completely

(10)

(11)
a; $R=H$
b; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$

(13)
a; $R^{1}=R^{2}=R^{3}=H$
b; $R^{1}=C H O, R^{2}=R^{3}=H$
c; $R^{1}=C O \cdot C F_{3}, R^{2}=R^{3}=H$
d; $R^{1}=R^{3}=C O \cdot C F_{3}, R^{2}=H$
e; $R^{1}=\mathrm{Me}, \mathrm{R}^{2}=C O \cdot C F_{3}, R^{3}=H$
f; $R^{1}=M e, R^{2}=R^{3}=H$

(14)

(12)

(15)

(16)

(17)

(18)
two well defined peaks at 1945 and $1815 \mathrm{~cm}^{-1}$ which, although weak, are prominent because of the lack of general absorption in this region. It is interesting that two related compounds, 9-benzyl-1-methyl- and -1-butyl-8-azapurin-6-one, show absorption near 1950 cm^{-1}, but not the other anomalies (re-examination of the parent, 9 -benzyl-8-azapurin-6-one, revealed a faint peak at $1945 \mathrm{~cm}^{-1}$ overlooked in the original report). ${ }^{9}$ c This extra absorption in the spectrum of 1-methyl-8-azapurin-6-one is taken as evidence of a strongly dipolar nature. The related 1 -methylpurine- 6 -one has strong absorption in the $2800-2500 \mathrm{~cm}^{-1}$ area. ${ }^{14}$ In other ways, the spectrum of 1-methyl-8-azapurin-6-one closely resembles those of its isomers, having bands at 3150 m ,

[^1]destroyed it. Equally unsuccessful were the use of hydrogen peroxide, ${ }^{15}$ nitrous acid, ${ }^{15}$ iodine, ${ }^{16}$ and aluminium amalgam. 1-Methyl-8-azapurine-6-thione (10) was destroyed by iodomethane in cold aqueous sodium hydroxide, a procedure that converted the 7 -, 8 -, and 9 -isomers into the corresponding 6 -methylthiocompounds; ${ }^{9 c, 12,13}$ the use of iodomethane with potassium carbonate in cold dimethylformamide also failed.

Conversion of 1 -methyl-8-azapurin-6-one into 6 -chloro-1-methyl-8-azapurine using triphenylphosphine in carbon tetrachloride ${ }^{17}$ proved unsuccessful, as did the use of thionyl chloride, catalysed by dimethylformamide, ${ }^{18}$ in boiling chloroform. The latter procedure had proved useful ${ }^{13}$ for preparing 6-chloro-8-methyl8 -azapurine, of which the 1-methyl isomer may have
${ }^{16}$ I. L. Doerr, I. Wempen, D. A. Clark, and J. J. Fox, J. Org. Chem., 1961, 26, 3401.

17 J. B. Lee and T. J. Nolan, Canad. J. Chem., 1966, 44, 1331.
${ }^{18}$ H. H. Bosshard, R. Mory, M. Schmid, and H. Zollinger, Helv. Chim. Acta, 1959, 42, 1653.
been formed here but underwent further attack. Most surprisingly, the product seems to be 6 -chloro- 4 -formyl-imino-1-methyl-5-dimethylamino-1,6-dihydropyrim-
idine (12), on the basis of the elemental analysis (with its unexpectedly high $\mathrm{C}: \mathrm{N}$ ratio), molecular weight, and ${ }^{1} \mathrm{H}$ n.m.r. and i.r. spectra. With one exception, ${ }^{19}$ the reported decompositions of 8 -azapurines have produced $1,2,3$-triazoles (summarized in ref. 1), but 2 -amino- 8 -azapurin-6-one gave 2,4,5-triaminopyrimidin-6-one with hot, dilute acid. In the present example, the reagents, or their product (chloromethylenedimethylammonium chloride ${ }^{20}$), may attack at $\mathrm{N}-9$; this is followed by elimination of a molecule of nitrogen from N-7 and N-8 and converted attack of $\mathrm{Me}_{2} \mathrm{~N}$ on the 5 -position of the pyrimidine ring. Further work is planned to test the constitution (12).

A different approach to 1-methyl-8-azapurines with no oxygen atom in the 6 -position was then made through derivatives of 4 -amino- 5 -aminomethyl-3-benzyl-1,2,3triazole (13a). The latter can be cleanly monoformylated on the 5 -aminomethyl group without affecting the less basic 4 -amino group. ${ }^{21}$ Unfortunately, the 5formamido proton in the product (13b) proved insufficiently activated for replacement by a methyl group. In a search for the more reactive 5 -trifluoroacetamido analogue (13c), the initial difficulty in finding conditions to favour monoacylation were overcome by the use of trifluoroacetic anhydride in cold trifluoroacetic acid. [The deliberate preparation of the diacyl derivative (13d) is also described in the Experimental section.] The insolubility of the monoacyl compound in cold N-hydrochloric acid confirmed the position of acylation, and the solubility in cold N -sodium hydroxide bore witness to the mobility of the neighbouring proton.

The trifluoroacetamido compound (13c) gave a good yield of 4 -amino-3-benzyl-5-(N-methyltrifluoroacet-amidomethyl)-1,2,3-triazole (13e) with iodomethane, and this product was cleanly deacylated to 4 -amino- 3 -benzyl-5-methylaminomethyl-1,2,3-triazole (13f) (purified as the phosphate) by brief heating in aqueous sodium hydroxide.

In an application of the new general method ${ }^{22}$ for synthesizing 1,6 -dihydro-8-azapurines, the methylaminomethyltriazole (13f) was condensed with formamidinium acetate to give an excellent yield of 9 -benzyl-1,6-dihydro-1-methyl-8-azapurine (11b). The retention of the N-methyl group gives the first indication that this reaction proceeds through a tetrahedral intermediate (14) which, by acquiring a proton and ejecting an ammonium ion, produces the final intermediate (15).

The new dihydro-8-azapurine (11b) was stable to aerial oxidation. Unfortunately, it resisted debenzyl-

[^2]ation, both by sodium in ammonia and by hydrogenation over palladium. When conditions were forced, as with hydrogenation in boiling butanol, the molecule was fragmented. In an attempt to obtain the compound (llb) by another route, 9 -benzyl-1,6-dihydro-8-azapurine ${ }^{22}$ was stirred with iodomethane and potassium carbonate in dimethylformamide. Even when less than one molecular proportion of iodomethane was used, the sole product was a dimethyl derivative, 9 -benzyl1,6 -dihydro- x, y-dimethyl-8-azapurinium iodide (pending the results of X-ray crystallography, x and y are tentatively assigned as 1 and 3).

1-Methyl-8-azapurine (3) proved more accessible from pyrimidine intermediates than from triazoles. 5 -Amino-1,4-dihydro-4-imino-1-methylpyrimidine hydrochloride (16), obtained by methylating 4,5-diaminopyrimidine, ${ }^{23}$ reacted with propyl nitrite in propanol to give the hydrochloride of 1,6 -dihydro-I-methyl-6-propoxy-8-azapurine (17), which is the propanol adduct of the cation of the goal (3), and has a main u.v. absorption peak displaced from that of 1 -methyl-8-azapurines, as expected, to a shorter wavelength near to that of the corresponding peak of the (hydrated) cation of the parent (3).

Silver carbonate converted this adduct into 1-methyl8 -azapurine which differed little from its 7 -methyl, ${ }^{12}$ 8 -methyl, ${ }^{13}$ and 9 -methyl, ${ }^{12,24}$ isomers in $\mathrm{p} K_{\mathrm{a}}$ and u.v. or n.m.r. spectrum. The n.m.r. spectrum (in $\mathrm{D}_{2} \mathrm{O}$) showed weak, highfield signals which denote equilibrium with about 15% of the covalent hydrate as in 8 -methyl8 -azapurine. ${ }^{13}$ The cation has a u.v. spectrum displaced to much shorter wavelengths, showing that it is entirely hydrated, as are the cations of the 7- and 8-methyl isomers. Nevertheless 1-methyl-8-azapurine has a much more polar character than its isomers, as indicated by the higher m.p. $\left(235^{\circ} ; c f .167,153\right.$, and 88° for the 7 -, 8 -, and 9 -methyl isomers respectively), and by its inability to be sublimed (even at $200^{\circ} \mathrm{C}$ and 0.03 mmHg), or extracted from water by dichloromethane, whereas the three known isomers are easily sublimed and extractable. ${ }^{25}$ Moreover, it is much less stable than the three isomers. The polar characteristics are attributed to a high proportion of the charged canonical form (18) in the resonance hybrid. Comparison with 1-methylpurine ${ }^{26}$ (vis- \grave{a}-vis the latter's 7 - and 9 -methyl isomers ${ }^{27}$) shows few parallels. There is a similar increase in m.p. for the 1-methylpurine isomer, but a u.v. spectral shift of about 10 nm to longer wavelengths, in both neutral species and cation, signifies a change in conjugation but no covalent hydration. No marked differences in solubility are evident from the literature. 1-Ethylpurine is significantly (about 2.6 pK units) more basic

[^3]than the 7 - and 9 -ethyl isomers. ${ }^{28}$ Calculation of charge distribution (CNDO method) ${ }^{29}$ indicated that the pyrimidine ring is positively charged in 1 -methylpurine, but negative in the 7 - and 9 -methyl isomers.

EXPERIMENTAL

Determinations of physical constants and establishment of chemical identity were made essentially as in Part 19. ${ }^{1}$ The mass spectra were obtained with a Hewlett-Packard 5983 A instrument. Most of the elemental analyses were performed by Galbraith Laboratories, Tennessee, and the others by the Australian National University's Analytical Service, in Canberra.

9-Benzyl-1-methyl-8-azapurin-6-one (2b) (3-Benzyl-3,6-di-hydro-6-methyl-v-triazolo[4,5-d]pyrimidin-7-one).-(a) 4-Amino-3-benzyl-1,2,3-triazole-5-(N-methylcarboxamide) (see following) $(2.3 \mathrm{~g}, 0.01 \mathrm{~mol})$ and formamide (20 ml) were heated at $190^{\circ} \mathrm{C}$ (bath temp.) in an open vessel for 1 h . The volatile materials were removed at $150{ }^{\circ} \mathrm{C}$ and 25 mmHg . The solid residue was rubbed with water (10 $\mathrm{ml})$, filtered off, dried, and recrystallized from 60 parts of benzene-ethanol ($1: 1$), yielding 62% of 9 -benzyl-1-methyl8 -azapurin-6-one, m.p. 221.5°. It also crystallized well from 13 parts of 2 -methoxyethanol but was poorly soluble in boiling ethanol or water (Found: C, $59.9 ; \mathrm{H}, 4.5$; N, 29.2. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{5} \mathrm{O}$ requires $\left.\mathrm{C}, 59.7 ; \mathrm{H}, 4.6 ; \mathrm{N}, 29.0 \%\right)$, $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.47(1 \mathrm{H}, \mathrm{H}-2), 2.70(5 \mathrm{H}, \mathrm{Ph}), 4.27(2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right)$, and $6.53\left(3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $\nu_{\text {max }} 1950 \mathrm{w}, 1700 \mathrm{br} \mathrm{s}(\mathrm{C}: \mathrm{O}$ str), $1555 \mathrm{~m}, 1325 \mathrm{~m}, 1270 \mathrm{~m}$, and $1200 \mathrm{~m} \mathrm{~cm}^{-1}$.
(b) Preferred method. 9-Benzyl-8-azapurin-6-one ${ }^{9}$ (2.27 g, 0.01 mol$)$, dimethylformamide (28 ml), potassium carbonate (flame-dried and finely powdered; $2.8 \mathrm{~g}, 4$ equiv.), and iodomethane ($4.3 \mathrm{~g}, 3$ equiv.) were stirred at $24{ }^{\circ} \mathrm{C}$ for 24 h . Volatile materials were removed at $110^{\circ} \mathrm{C}$ and 25 mmHg . Water (20 ml) was added to the residue and 9 -benzyl-1-methyl-8-azapurin-6-one, m.p. 221°, was filtered off in 94% yield after washing with ethanol and drying at $110^{\circ} \mathrm{C}$ (identical with authentic material).

4-Amino-3-benzyl-1,2,3-triazole-5-(N-methylcarboxamide)-
(7a).- 4-Amino-3-benzyl-5-[(methylthio)carbonyl]-1,2,3triazole (8a) ($1.0 \mathrm{~g}, 0.004 \mathrm{~mol}$), in fine powder, was stirred with ethanolic 35% methylamine (20 ml ; Fluka) for 45 h . The solution was taken to dryness at $50{ }^{\circ} \mathrm{C}$, giving 94% of this amide, m.p. 155° (lit., ${ }^{2} 155^{\circ}$), from 8 parts of ethanol.

Hydrolysis of 9-Benzyl-1-methyl-8-azapurin-6-one.-This azapurinone $(0.241 \mathrm{~g}, 0.001 \mathrm{~mol})$ and N -potassium hydroxide (2.5 ml) were heated under reflux for 5 min ; the mixture was then refrigerated and filtered. The precipitate was pure 4 -amino- 3 -benzyl-1,2,3-triazole- 5 (N-methylcarboxamide) (7a) (50%), m.p. 155° (see foregoing). The filtrate, adjusted to pH 2.5 with sulphuric acid gave a white precipitate of 3 -benzyl-4-formamido-1,2,3-triazole-5-(N-methylcarboxamide) (7b), m.p. 138°, from 19 parts of water and 8 parts of 95% ethanol (40% yield) (Found: C, 55.6; H, 5.1; N, 27.0. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires C, $55.6 ; 5.05 ; \mathrm{N}, 27.0 \%), M 231$ [other prominent signals at $m / e 200,199,173,171,145$, and 91 (benzyl)] [this spectrum is identical with that for the deformylated analogue (7a)].

4-Amino-3-benzyl-1,2,3-triazole-5-(N-butylcarboxamide).-4-Amino-3-benzyl-5-[(methylthio)carbonyl]-1,2,3-triazole $(8 \mathrm{a})^{7}(0.62 \mathrm{~g}, 0.0025 \mathrm{~mol})$ and butylamine ($5 \mathrm{ml}, 20$ equiv.) were refluxed for 2 h . Excess of amine was removed (oilbath at $100{ }^{\circ} \mathrm{C}$ and 25 mmHg). The residue, recrystallized from a little ethanol (2 crops) gave the butylcarboxamide
almost quantitatively, m.p. 150° (Found: C, 61.2 ; H, 6.8 ; $\mathrm{N}, 25.7 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$ requires C, 61.5; H, 7.0; N, 25.6\%), $\nu_{\text {max }} 3350,3290,3230,3180$ (all m, NH str.), 1645 s , 1630 s (amide I band, free and assoc.), and $1540 \mathrm{~s} \mathrm{~cm}^{-1}$ (amide II), insoluble in cold $\mathrm{N}-\mathrm{NaOH}$ and -KOH (test confirmation that no Dimroth rearrangement of benzyl group has occurred).

9-Benzyl-1-butyl-8-azapurin-6-one.-The foregoing amide $(0.274 \mathrm{~g}, 0.001 \mathrm{~mol})$ and formamide $(2 \mathrm{ml})$ were heated at $225{ }^{\circ} \mathrm{C}$ (bath) for 1 h in an open vessel. Addition of water (4 ml), chilling, and filtering produced 9 -benzyl-1-butyl-8-azapurin-6-one (90%), m.p. 99°, from 65 parts of 33% ethanol (Found, for material dried at 80° in air: C, 63.4; $\mathrm{H}, 5.9 ; \mathrm{N}, 25.0 . \quad \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 63.6 ; \mathrm{H}, 6.05$; $\mathrm{N}, 24.7 \%$), $\nu_{\text {max. }} 1960 \mathrm{w}, 1695 \mathrm{~s}$ (C:O), $1560 \mathrm{~m}, 1350 \mathrm{~m}$, $1270 \mathrm{~m}, 1185 \mathrm{~m}$, and $800 \mathrm{~m} \mathrm{~cm}^{-1}, \tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.38(1 \mathrm{H}$, $\mathrm{H}-2), 2.66(5 \mathrm{H}, \mathrm{Ph}), 4.26\left(2 \mathrm{H}, \mathrm{CH}_{2}\right)$, and $5.97(2 \mathrm{H}, \mathrm{t})$, $8.5(4 \mathrm{H}, \mathrm{m})$, and $9.06(3 \mathrm{H}, \mathrm{t})$ (all centres, Bu$), \lambda_{\text {max. }}(\mathrm{EtOH})$ $259 \mathrm{~nm}(\log$ ع 3.90$)$.

3-Benzyl-4-methylaminomethyleneamino-1,2,3-triazole-5-(N-methylcarboxamide) (9) (with A. M. Trotter).-9-Benzyl-1-methyl-8-azapurin-6-one ($0.24 \mathrm{~g}, 0.001 \mathrm{~mol}$) was stirred with liquefied methylamine (10 ml) while sodium $(0.046 \mathrm{~g})$ was added. Evaporation of the methylamine, and recrystallization of the residue from 17 parts of ethanol, gave the carboxamide (75%), m.p. 186° (Found: C, 57.2; $\mathrm{H}, 5.9 ; \mathrm{N}, 30.7 . \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}$ requires $\mathrm{C}, 57.3 ; \mathrm{H}, 5.9 ; \mathrm{N}$, 30.9%), $\searrow_{\text {max. }} 3225 \mathrm{~m}(\mathrm{NH}), 1635 \mathrm{br}, \mathrm{s}(\mathrm{CO}), 1540 \mathrm{br}, \mathrm{s}$, $1410 \mathrm{~m}, 1260 \mathrm{~m}$, and $1200 \mathrm{~m} \mathrm{~cm}^{-1}, M^{+} 272$ [other prominent signals at $m / e 243,212,186,171,91$ (benzyl), and 69]; ${ }^{1} \mathrm{H}$ n.m.r. data in main text; insoluble in cold N -sodium hydroxide and N -formic acid; soluble in N -hydrochloric acid.

1-Methyl-8-azapurin-6-one (2a) (3,6-Dihydro-6-methyl-v-triazolo[4,5-d]pyrimidin-7-one).-(a) By debenzylation (with A. M. Trotter). 9-Benzyl-1-methyl-8-azapurin-6-one $(0.482 \mathrm{~g}, 0.002 \mathrm{~mol})$, dissolved in butanol (20 ml) and acetic acid (2 ml), was hydrogenated over pre-reduced palladium-carbon ($10 \% ; 0.08 \mathrm{~g}$) at $117{ }^{\circ} \mathrm{C}$ and atmospheric pressure for 1.5 h . Without prior filtration, the suspension was dried at $90^{\circ} \mathrm{C}$ and 25 mmHg . The residue, well cooled, was stirred with 0.25 N -sodium hydroxide (12 $\mathrm{ml})$ and kieselguhr (0.1 g), and rapidly filtered. The filtrate, adjusted to pH 5.5 with acetic acid, and concentrated at $35^{\circ} \mathrm{C}$ (to 4 ml), was cooled, and acidified to pH 3.5 (with $5 \mathrm{~N}-\mathrm{H}_{2} \mathrm{SO}_{4}$). Refrigeration yielded 1-methyl-8-azapurin-6one $\left(72 \%\right.$), m.p. 253° (with slight effervescence), from 6 parts of water or 65 parts of 90% ethanol (Found: C, 39.8; H, 3.4; N, 46.2. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 39.75$; H . $3.3 ; \mathrm{N}, 46.3 \%), \tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 1.59(1 \mathrm{H}, \mathrm{H}-2)$ and 6.49 ($3 \mathrm{H}, \mathrm{Me}$).
(b) By ring closure of a triazole. 4-Amino-1,2,3-triazole5 -(N-methylcarboxamide) (7 c$)^{7}(3.53 \mathrm{~g}, 0.025 \mathrm{~mol})$ and formamide (50 mll) were heated in an open vessel at $195^{\circ} \mathrm{C}$ (bath) for 45 min . Excess of reagent was removed at $160^{\circ} \mathrm{C}$ and 25 mmHg , and the residue, recrystallized from a little water, gave 1-methyl-8-azapurin-6-one (2a) (78\%), m.p. 253°.

1-Methyl-8-azapurine-6-thione (10).--Phosphorus pentasulphide (0.22 g) was added to a hot solution of 1-methyl8 -azapurin- 6 -one ($0.15 \mathrm{~g}, 0.001 \mathrm{~mol}$) in dried pyridine (2 ml) and the whole was heated under reflux for 4 h . Water

[^4]$(1.5 \mathrm{ml})$ was abled. and the volatile materials were removed in vacuo at $\mathrm{BO}^{-} \mathrm{C}$. Water (1.5 ml) was again added and the pH adjusted. when necessary, to $2.5-4.5$. Chilling and filtration ,ave 1-methyl 8-azapurine-6-thione (83%), m.p. about 240° (blackens) when introduced at 230° (from 140 parts of boiling water or 75 parts of 90% ethanol); soluble in cold x-sotium hedroxide (Found: C, 35.9; H, 3.1; N, 41.6. $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{5}$. requires $\mathrm{C}, 35.9 ; \mathrm{H}, 3.0 ; \mathrm{N}, 41.9 \%$). It was not even partly isomerized to a thiadiazolopyrimidine (the Christmas rearrangement, given by analogues ${ }^{9 C}$) when heated under reflux with butanol for 1 h .

Chlorination of 1-Methyl-8-azapurin-6-one (2a).-Thionyl chlorite ($38 \mathrm{ml}, 0.05 \mathrm{~mol}$), dimethylformamide (1.0 ml , $0.014 \mathrm{mal})$, and 3 -methyl-8-azapurin-6-one ($1.51 \mathrm{~g}, 0.01$ mol), suspenderl in chloroform (40 ml), were heated under reflus for 4 h (the mixture became clear after 20 min and began to deposit material 10 min later. The suspension was left at - 10 " C overnight, and filtered. The solid, dissolved in water (1 ml). was adjusted to pH 10 with ammonia and shaken out with chloroform ($2 \times 15 \mathrm{ml}$). The lower lavers were bulked, dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), and evaporated in vacuo. The residue, recrystallized from 10 parts of benzene-cyclohexane ($1: 1$), gave presumed 6 -chloro-4-formylimino-1-methyl-5-dimethylamino-1,6-dihydropyrimidine (12) (41%), m.p. 125.5°. Sodium carbonate could replace the ammonia without much loss of yield (Found: C. $45.0 ; \mathrm{H}, 5.3 ; \mathrm{Cl}, 16.7 ; \mathrm{N}, 26.3 . \mathrm{C}_{8} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{O}$ requires C, $44.8 ; \mathrm{H}, 5.2 ; \mathrm{Cl}, 16.5 ; \mathrm{N}, 26.1 \%) ; M^{+} 214\left({ }^{35} \mathrm{Cl}\right)$ and $216\left({ }^{37} \mathrm{Cl}\right)$ (other prominent peaks at m / e 199, 186, 179, 172, $170,163,138,57$, and 42), $-\left(\mathrm{D}_{2} \mathrm{O}\right) 2.01(1 \mathrm{H}, \mathrm{CHO}), 219$ (1 $\mathrm{H}, \mathrm{H}-2), 6.49(3 \mathrm{H}, 1-\mathrm{Me})$, and $6.98\left(6 \mathrm{H}, \mathrm{NMe}_{2}\right)$, $\mathrm{y}_{\text {max. }}$ (Nujol) $1650 \mathrm{br}, \mathrm{s}$ (CO str), $1585 \mathrm{br} . \mathrm{s}, 1410 \mathrm{~m}, 1330 \mathrm{~m}$, $1100 \mathrm{~m}, 955 \mathrm{~s}$, and $780 \mathrm{~m} \mathrm{~cm}^{-1}$ (Cl-C str.)

4-Amino-3-benzyl-5-trifluoroacetamidomethyl-1,2,3-triazole (13c). - 4-Amino-5-aminomethyl-3-benzyl-1,2,3-triazole (13a) ${ }^{19}(2.30 \mathrm{~g}, 0.01 \mathrm{~mol})$ was dissolved in trifluoroacetic acid (15 ml) with cooling to $24^{\circ} \mathrm{C}$. Trifluoroacetic anhydride ($2.4 \mathrm{~g} ; 15^{n}{ }_{\mathrm{o}}$ excess) was added, and the solution set aside at $24^{\circ} \mathrm{C}$ for 8 h . The volatile portion was removed in vacuo at $35^{\circ} \mathrm{C}$, and the residue recrystallized twice from 25% ethanol (45 ml , then 80 ml) giving the title compound (67%), m.p. 188° (Found: C, 48.3; H, 4.0; F, 19.0. N, 23.2. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 48.15 ; \mathrm{H}, 4.0 ; \mathrm{F}, 19.0$; $\mathrm{N}, \mathbf{2 3 . 4} \%$). It can also be recrystallized from 300 parts of water or 190 parts of benzene.

3-Benzyl-4-trifluovoacetamido-5-trifluoroacetamidomethyl-1,2,3-triazole (13d).-4-Amino-5-aminomethyl-3-benzyl-$1,2,3$-triazole $(0.203 \mathrm{~g}, 0.001 \mathrm{~mol})$ was rubbed with trifluoroacetic anhydride (1.6 g) until dissolved, then the solution was set aside at $24^{\circ} \mathrm{C}$ for 24 h . The thick paste was taken to dryness at $40^{\circ} \mathrm{C}$ giving the product (85%), m.p. 149° from 4.5 parts of benzene (Found: C, $42.6 ; \mathrm{H}$, $2.8 ; \mathrm{F}, 28.9 ; \mathrm{N}, 17.4 . \quad \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{6} \mathrm{~N}_{5} \mathrm{O}_{2}$ requires $\mathrm{C}, 42.5 ; \mathrm{H}$, $2.8 ; \mathrm{F}, 28.8 ; \mathrm{N}, 17.7 \%$).

4-A mino-3-benzyl-5-(N-methyltrifluoroacetamidomethyl)-1,2,3-triazole (13e).-4-Amino-3-benzyl-5-trifluoroacet-amidomethyl-1,2,3-triazole ($0.30 \mathrm{~g}, 0.001 \mathrm{~mol}$) dissolved in dimethylformamide (2 ml) at $24^{\circ} \mathrm{C}$, flame-dried potassium carbonate ($0.21 \mathrm{~g}, 3$ equir.), and iodomethane ($0.28 \mathrm{~g}, 2$ equiv.) were stirred for 1.5 h . The volatile portion was then removed at $110^{\circ} \mathrm{C}$ and 25 mmHg . Water (4 ml) was added to the well-cooled residue. The precipitate, filtered off at once and washed with much water and a little 25% ethanol, gave the N-methyl derivative ($\mathbf{7 4} \%$), m.p. 142.5° (from about 4 parts of methanol) (Found: C, 49.9; H,
4.3; N゙, 22.4. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}$ requires $\mathrm{C}, 49.8 ; \mathrm{H}, 4.5 ; \mathrm{N}$, 22.4%).

4-Amino-3-benzyl-5-methylaminomethyl-1,2,3-triazole (13f). -- The trifluoroacetamido-derivative (13e) ($0.42 \mathrm{~g}, 0.00134$ mol) and \aleph-sodium hydroxide ($2.1 \mathrm{ml}, 1.5$ equiv.) were boiled for 30 s ; the mixture was then quickly cooled and shaken out with chloroform $(2 \times 7 \mathrm{ml})$. The chloroform layer was dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and taken to dryness, in vacuo, at eventually $55^{\circ} \mathrm{C}$. κ-Phosphoric acid was added until the pH fell to 8 . The addition of acetone (7.5 ml) initiated precipitation (completed at $-10^{\circ} \mathrm{C}$ overnight) of bis-(4-amino-3-benzyl-5-methylaminomethyl-1,2,3-triazolium)
hydrogen phosphate (84%), m.p. 180° from 150 parts of ethanol Founcl: C, 49.5; H, 6.3; N, 26.4. $\left(\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5}\right)_{2}$,$\mathrm{H}_{3} \mathrm{PO}_{4}$ requires $\left.\mathrm{C}, 49.6: \mathrm{H}, 6.25 ; \mathrm{N}, 26.3 \%\right]$. The base was liberated by shaking the phosphate (1.25 g) with 2 N sodium hydroxide (2.5 ml) and chloroforin ($3 \times 15 \mathrm{ml}$); 97% recovery; m.p. 93° (from benzene). The quantitative extraction shows that no Diniroth rearrangement to the acidic 4 -benzylamino isomer had taken place during boiling with alkali.
9-Benzyl-1,6-dihydro-1-methyl-8-azapurine (11b) (3-Benzyl-6,7-dihydro-6-methyl-v-triazolo[4,5-d]pyrimidine.-4-Amino-3-benzyl-5-methylaminomethyl-1,2,3-triazolium phosphate (0.266 g , equiv. to 0.001 mol of base), formamidinium acetate ($0.21 \mathrm{~g}, 2$ equiv.), and sieve-dried butanol (3 ml) were heated under reflux for 2 h . More formamidinium acetate $(0.21 \mathrm{~g})$ was added and refluxing was continued for 2 h longer. The volatile portion was removed at $90^{\circ} \mathrm{C}$ and 25 mmHg , and the residue quickly boiled with water (1.5 mll) and refrigerated (the pH at this stage nust be maintained above 4 to avoid loss as a soluble salt). Filtration gave 9-benzyl-1,6-dihydro-1-methyl-8-azapurine (80%), m.p. 106°, from 23 parts of water. It was very soluble in cold benzene, but only slightly in boiling cyclohexane (Found: C, $63.2 ; \mathrm{H}, 5.6 ; \mathrm{N}, 30.5 . \quad \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{5}$ requires $\mathrm{C}, 63.4 ; \mathrm{H}$, $5.8 ; ~ ㄷ, 30.8 \%$), $M^{+} 227$ (other prominent peaks at m / e 198, 157, 108, and 91), $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.76(5 \mathrm{H}, \mathrm{Ph}), 2.85$ $(1 \mathrm{H}, \mathrm{H}-2), 4.69\left(2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.34\left(2 \mathrm{H}, 6-\mathrm{H}_{2}\right)$, and 7.08 ($3 \mathrm{H}, \mathrm{Me}$).
Methylation of 9-Benzyl-1,6-dihydro-8-azapurine.-Iodomethane ($0.42 \mathrm{~g}, 3$ equiv.) and flame-dried potassium carbonate ($0.21 \mathrm{~g}, 3$ equiv.) were added to a solution of 9 -benzyl-1,6-dihydro-8-azapurine ${ }^{22}(0.213 \mathrm{~g}, 0.001 \mathrm{~mol})$ in dried dimethylformamide (2 ml). The suspension was stirred at $24^{\circ} \mathrm{C}$ for 48 h , then filtered. The solid was washed with a little ethanol, then suspencled in water (1 ml) and filtered off, yielding 9 -benzyl-1,6-dihydro- x, y-dimethyl-8azapurinium iodicle (50%), m.p. 206° (effervesces), from 50 parts of ethanol or 8 parts of water; insoluble in acetone or ethyl acetate (Found: C, 42.3; H, 4.4; N, 19.0. Calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{IN}_{5}$: C, 42.6; H. 4.4; $\mathrm{N}, 19.0 \%$), $\tau\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]$ $2.46(1 \mathrm{H}, \mathrm{H}-2), 2.66(5 \mathrm{H}, \mathrm{Ph}), 4.47\left(2 \mathrm{H}, \mathrm{PhCH}_{2}\right), 5.12$ ($2 \mathrm{H}, 6-\mathrm{H}_{2}$), and 5.98 and 6.95 (each $3 \mathrm{H}, 2 \times \mathrm{Me}$).

1-Methyl-8-azapurine (6-Methyl-v-triazolo[4,5-d]pyrimidine) (with D. Thacker) (3).-5-Amino-1,4-dihydro-4-imino-1-methylpyrimidine hydrochloride ${ }^{23}$ (16) (0.161 g , 0.001 mol), propyl nitrite (1.6 ml), and propanol (16 ml) were stirred at $24^{\circ} \mathrm{C}$ for 4 h . The solution was concentrated in vacuo and diluted with light petroleum (b.p. $40-60^{\circ} \mathrm{C}$). The deposited solid, recrystallized from propanol-light petroleum, gave 1,6-dihydro-1-methyl-6-propoxy-8-azapurine (17) hydrochloride (6,7-dihydro-6-methyl-7-propoxy-v-tri-azolo[4,5-d]pyrimidine hydrochloride) (60%), m.p. 137° (foams) (Found: C, 41.0; H, 6.0; Cl, 15.55; N, 30.5.
$\mathrm{C}_{8} \mathrm{~N}_{14} \mathrm{ClN}_{5} \mathrm{O}$ requires $\mathrm{C}, 41.45 ; \mathrm{H}, 6.1 ; \mathrm{Cl}, 15.3 ; \mathrm{N}, 30.2 \%$), $\mathrm{p} K_{\mathrm{a}}^{\prime} 3.24 \pm 0.03\left(0.0004 \mathrm{~m}\right.$, in water at $20^{\circ} \mathrm{C}$; analyt. $\lambda 250 \mathrm{~mm})$, $\lambda_{\max } 261 \mathrm{~nm}(\log \varepsilon 3.94)$ (in propanol).

This hydrochloride (0.2 g), silver carbonate (0.28 g), and methanol (3 ml) were stirred overnight. The mixture was then filtered, the filtrate was taken to dryness, and the residue was repeatedly recrystallized from methanolether and dried at $140^{\circ} \mathrm{C}$ and 0.01 mmHg to give 1 -methyl8 -azapurine (40%), m.p. about 235° (decomp.) (Found: C, 44.6; $\mathrm{H}, 4.1 ; \mathrm{N}, 51.3 . \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5}$ requires $\mathrm{C}, 44.45 ; \mathrm{H}$, 3.7 ; $\left.\mathrm{N}, 51.8{ }_{0}^{\circ}\right), \tau\left(\mathrm{D}_{2} \mathrm{O}\right)(a)$ peaks integrating to 85%, $0.21,0.88$, and 5.57 (cf. $0.31,0.82$, and 5.40 for 8 -methyl-8azapurine ${ }^{13}$), (b) peaks integrating to $15 \%, 2.39$ and 3.64
(cf. 2.56 and 3.57 for 8 -methyl-8-azapurine ${ }^{13}$); $\tau\left(\mathrm{D}_{2} \mathrm{O}-\right.$ $\mathrm{DCl}) 1.50,3.39$, and $6.43, \lambda_{\text {max. }} 215 \mathrm{~nm}(\log \varepsilon 4.31)$ and 270 $\mathrm{nm}(3.80)$ (neutral species in $\mathrm{H}_{2} \mathrm{O}$ at pH 7.0) or 253 nm ($\log \varepsilon 3.96$) (hydrated cation at pH 1.0).

I thank the staff of the Graduate Chemistry School in this University for accommodation and discussions. I thank Mrs. Clara J. Lin for many of the instrumental measurements and Mr. A. M. Trotter for preparative assistance. This investigation was supported by the National Cancer Institute, Department of Health, Education, and Welfare, Washington, D. C.
[7/1112 Received, 27th June 1977]

[^0]: 10 K. Lehmstedt and H. Hundertmark, Ber., 1931, 64, 2386.
 11 A. Albert, J.C.S. Perkin I, 1972, 461; A. Albert and H. Taguchi, ibid., 1973, 2037.

[^1]: 12 A. Albert and K. Tratt, J. Chem. Soc. (C), 1968, 344.
 13 A. Albert, J. Chem. Soc. (C), 1968, 2076.
 14 J. A. Montgomery and H. J. Thomas, J. Org. Chem., 1965, 30, 3235.
 ${ }_{15}$ W. Traube and F. Winter, Arch. Pharm., 1906, 244, 11; W. Traube, Annalen, 1904, 331, 64.

[^2]: 19 Y. Hirata, K. Iwashita, and K. Teshima, Nagoya Sangyo Kagaku, 1957, No. 9, 83 (Chem. Abs., 1957 1957, 51, 12074).
 ${ }^{20}$ H. H. Bosshard and H. Zollinger, Helv. Chim. Acta, 1959, 42, 1659.
 ${ }_{21}$ A. Albert, J.C.S. Perkin I, 1973, 1634.
 22 A. Albert, J.C.S. Perkin I, 1976, 291.
 ${ }^{23}$ D. J. Brown and N. W. Jacobsen, J. Chem. Soc., 1962, 3172.

[^3]: ${ }_{25}^{24}$ A. Albert, J. Chem. Soc. (B), 1966, 427.
 ${ }_{25}$ A. Albert, W. Pfleiderer, and D. Thacker, J. Chem. Soc. (C), 1969, 1084.
 ${ }^{26}$ L. B. Townsend and R. K. Robins, J. Org. Chem., 1962, 27, 990.
 ${ }_{27}$ A. Bendich, P. J. Russell, and J. J. Fox, J. Amer. Chem. Soc., 1954, 76, 6073; Fischer, E., Ber., 1898, 31, 2550; A. Albert and D. J. Brown, J. Chem. Soc., 1954, 2060.

[^4]: ${ }^{28}$ R. W. Balsiger, A. L. Fikes, T. P. Johnston, and J. A. Montgomery, J. Org. Chem., 1961, 26, 3446.
 ${ }_{29}$ Z. Neiman, Experientia, 1975, 31, 996.

